

EuroPHit

Outlines for training modules for designer

Zeno Bastian Passive House Institute Darmstadt, Germany

Co-funded by the Intelligent Energy Europe Programme of the European Union www.europhit.eu

The EuroPHit Project

With the EnerPHit Standard as the goal and Passive House principles as the basis, EuroPHit applies knowledge on deep energy retrofits to the oft-overlooked yet critical area of step-bystep refurbishments

Step by step towards the goal... Training modules for designers

Workshop modules

Euro**PHit**

Passive house designer					
Day 1	Passive House Principles 1.1 Basics of Passive Houses and EnerPHit 1.2 Design boundaries: Climate/Shading/Usage 1.3 Sustainability principles and RES potential	EnerPHit: High efficiency retrofits 5.1 High efficiency components for retrofits 5.2 Internal insulation 5.3 EnerPHit retrofits	Day 5		
Day 2	Opake Building Envelope / construction 2.1 Thermal insulation / Thermal bridges 2.2 Airtightness 2.3 Enter building envelope into the PHPP	Practical implementation / Quality assurance 6.1 Quality assurance design and construction 6.2 Airtightness test and ventilation setup 6.3 Economic efficiency and LCA	Day 6		
Day 3	Windows 3.1 Window glazing and window frames 3.2 Window Installation 3.3 Enter Windows/Shading into the PHPP	Step by step refurbishments 7.1 sbs retrofits and refurbishment plans 7.2 Special connection details and products 7.3 Enter refurbishment steps into the PHPP	Day 7		
Day 4	Mechanical services 4.1 Controlled ventilation with heat recovery 4.2 Heat and cooling supply, DHW 4.3 Enter technical equipment into te PHPP	Optional: Workshop (by course providers) 8.1 Questions 8.2 Repetition 8.3 Excercises	Day 8		

Optional: Final Examination Certified Passive House Designer (coordinated with PHI examination dates)

Certified Passive House Designer

(All Certified Passive House Designers are listed on http://www.passivhausplaner.eu)

Co-funded by the Intelligent Energy Europe Programme of the European Union www.europhit.eu

Implementation of energy, step by step

Service life and replacement times of building components*

	1953 1960	1970	1980	1990	2000	2008	2020	2030	2040
Building shell									
Roof tiles									
Plaster facade									
Windows									
Entrance door		_							
Heat generator heating									
Heat generator for DHW									

Good condition Slightly worn out, small repairs necessary Quite worn out, larger repairs necessary End of service life Time of refurbishment (actual/recommended)

*based on: "Aging characteristics of building components and maintenance costs", Professor P. Meyer

Measures: Facade insulation using EIFS

Euro**PHit**

Measures: insulation apron

Thermal bridge Gable wall 50 100 150 Х Х Х 10 10 10 cm cm cm Ψ = 0.055 W/(mK) Ψ = 0.055 W/(mK) $\Psi = 0.127 \text{ W/(mK)} \quad \Psi = 0.064 \text{ W/(mK)}$

Measures: insulation of the top floor ceiling

EuroPHit

Measures: insulation of the top floor ceiling

New window – summarised Before + intermediate state

New window – summarised Before + final state with exterior insulation

Euro**PHit**

Measures: window replacement

Measures: airtightness

Measures: airtightness testing

Ventilation in modernisations of existing buildings

Modernisation of an existing building without a ventilation system

Measures: ventilation system with heat recovery EuroPHit

Measures: central gased-based condensing boiler

Measures: RES Implementation

How to implement energy efficiency in step-by-step retrofits?

1. Components step-by-step

Building stock	Insulation	v

RES and heating system

2. Facades / parts of the building step-by-step

Building stock	No	North and west side		

Other windows, airtightness and ventilation

Co-funded by the Intelligent Energy Europe Programme of the European Union Remaining insulation, RES and heating system

Euro**PHit**

Thank you for your attention

www.europhit.eu

The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein.

Partners:

